
Autonomic Cluster Management System (ACMS): A Demonstration of
Autonomic Principles at Work

James D. Baldassari1, Christopher L. Kopec1, Eric S. Leshay1, Walt Truszkowski2, David Finkel1

1Worcester Polytechnic Institute
Computer Science Department

Worcester, MA 01609
{jdb, chris, ericl, dfinkel}@wpi.edu

2NASA Goddard Space Flight Center
Advanced Architectures & Automation Branch

Greenbelt, MD 20771
walt.truszkowski@nasa.gov

Abstract

Cluster computing, whereby a large number of simple
processors or nodes are combined together to
apparently function as a single powerful computer, has
emerged as a research area in its own right. The
approach offers a relatively inexpensive means of
achieving significant computational capabilities for
high-performance computing applications, while
simultaneously affording the ability to increase that
capability simply by adding more (inexpensive)
processors. However, the task of manually managing
and configuring a cluster quickly becomes impossible as
the cluster grows in size. Autonomic computing is a
relatively new approach to managing complex systems
that can potentially solve many of the problems inherent
in cluster management. We describe the development
of a prototype Automatic Cluster Management System
(ACMS) that exploits autonomic properties in
automating cluster management.

1. Introduction

NASA’s Goddard Space Flight Center (GSFC)
conducts research and development in a wide range of
topics and areas in the field of information technology.
These include research in areas such as advanced
knowledge management, data/information visualization,
semantic-web technologies, sensor-web technologies and
grid computing, amongst others.

The primary aim of this research is to support NASA
missions and projects. This includes applications that
involve the collection and management of extremely
large datasets and the use of very complex models for
manipulating and interpreting science data collected by
various NASA instruments and missions.

The successful completion of GSFC’s science data
and information processing objectives often entails the
solution of large distributed computational problems,
such as the management and simulation of complex
Earth-modeling systems. Many of these problems are so

computationally demanding that some form of High
Performance Computing (HPC) is required to solve
them.

2. HPC and Cluster Computing

Traditionally, at NASA and elsewhere, Massively
Parallel Processing (MPP) computer systems have been
used to meet high performance computing requirements.
MPP computers may contain hundreds or thousands of
processors within a single computer system. Typically,
these types of computer systems are extremely
expressive and upgrading typically requires a complete
rebuild of the system. They are, however, relatively
simple to manage, and they certainly perform very well.
A recent trend in high performance computing has been
to overcome the cost and scalability issues associated
with MPP systems by replacing these with a different
type of HPC system called a cluster.

A cluster is composed of a collection of inexpensive
individual computers, referred to as ‘nodes’, that are
connected together via a network and configured so as to
appear to the user as a single powerful computer.

Increasing the computational capability of a cluster is
as simple as adding nodes to the system, resulting in a
highly scalable HPC solution. The largest disadvantage
of using a cluster, however, is the complexity of its
management and configuration.

Instead of administering a single computer, as with
an MPP system, management and configuration tasks
on a cluster must be performed on every node. In a
cluster comprised of hundreds or thousands of nodes
management becomes a daunting task.

Manually configuring thousands of nodes is highly
inefficient, if not impossible. While an operating system
may be able to optimize its own processes, it is not
aware of the cluster as a whole and consequently cannot
coordinate its activities with the other nodes. A severed
network connection or an otherwise unresponsive node
could cripple the cluster if there is no mechanism to
recover from failures. Finally, unauthorized access to the
cluster is a constant concern for system administrators,

due to the significant number of potential intrusion
points.

3. Autonomic Computing and Cluster
Management

Autonomic computing represents a relatively new
approach to the management of complex systems that
offers the potential of solving many of the problems
inherent in cluster management.

By definition, an autonomic system is one that, at a
minimum, exhibits the properties of being self-
configuring, self-optimizing, self-healing, and self-
protecting [2]. Like the autonomic nervous system of a
human, an autonomic program should react to events
without conscious thought, but rather as a reflex [3].
Using this set of autonomic properties as a guide, we
have designed and implemented a prototype Autonomic
Cluster Management System (ACMS).

In the remainder of this paper, we will describe the
autonomic aspects of this system, address the
architectural issues of the ACMS, and describe our
results from the evaluation of the prototype.

3.1 ACMS Prototype

The ACMS is a mobile agent system composed of a
number of agent processes communicating across a
network of nodes.

The system consists of three types of agents, each
with functionality implementing autonomic system
properties. The three agent types are:

• General Agents,
• Optimization Agents, and
• Configuration Agents.

Specifically, the ACMS is comprised of two
Configuration Agents and one Optimization Agent per
implementation, and two General Agents per node.

Each agent is designed to be specific purpose, and to
perform a particular task. Together the community of
agents collaborates to achieve a common goal,
specifically providing autonomic management of a
cluster, while simultaneously maximizing performance
by implementing load-balancing techniques on the
system.

Figure 1 shows the architecture of the prototype
system.

Figure 1. Architecture of the Prototype

3.2 Autonomic properties

A system is said to be autonomic if it incorporates the
four key autonomic properties: self-configuring, self-
healing, self-optimizing and self-protecting. Like the
autonomic nervous system of the human body, an
autonomic system should react to events as a reflex,
without conscious thought. We examine now how a
cluster management system makes use of the key
autonomic properties.

Self-Configuring

Updating a cluster’s configuration and parameters is a
time consuming task that plagues system administrators
whenever a change is made. Systems that can adapt to
system changes without human intervention are self-
configuring and allow administrators to focus their
attention on more important tasks.

In a cluster environment these changes often deal
with topology, such as a node failure, the addition of a
new node, or the relocation of a node. As topologies
grow larger and modification becomes more frequent,
the need for a system that can recognize change and
automatically adapt accordingly is essential. This is one
goal that the ACMS achieves in its pursuit of
autonomous operation.

The ACMS assigns the task of recognizing changes,
analyzing the configuration, and generating new plans to
execute to the Configuration Agent. In order for the
Configuration Agent to recognize change it must first be
aware of the current environment. This is accomplished
through polling, in which a broadcast message is sent to
determine where all other nodes in the system are

located. This is performed at regular intervals to
discover new or removed nodes.

The Configuration Agent maintains this information
in a database for use by other agents in the ACMS. By
polling the cluster and comparing it with previously
stored configurations, the system is able to make
informed decisions about its current capacity and carry
out various scenarios for recovery or optimization.

Self-Healing

In today’s world of on-demand computing, the terms
availability and quality of service have taken on new
meanings.

It is no longer sufficient for a program to be defect-
free; in addition, it must be operational at all hours and
running at peak performance for months, or even years,
at a time. In practice, this necessitates hiring staff to
monitor the service and fix any problems with as little
disruption to the user as possible. If the system could
recover from faults and errors on its own, then the need
for monitors and around-the-clock staff would be
eliminated, and resources could be applied elsewhere.

 This is the idea behind self-healing, that is,
developing a system that can recover from faults and
resume service seamlessly without human interaction.

The ACMS achieves self-healing through the
use of redundancy and monitors. The Configuration
Agent takes on the role of the monitor when it is
polling nodes. If it determines that a node and the
agents who reside there do not respond, it takes action
to remedy the problem. The ACMS incorporates the
ability to start new agents in the architecture of each
agent so that any agent may spawn any other type of
agent.

The Configuration Agent determines the type of
agent that must be created and instructs another agent on
the network to spawn that agent. Armed with this
capability, the system can be returned to full operational
status.

One difficulty is spawning agents on a node after all
agents on the node have been failed. To handle this
problem the ACMS maintains a minimum of two
(general) agents on every node so that a backup agent is
available if any one agent fails. Currently the ACMS
has a single fault tolerance, but this can be expanded by
instantiating additional redundant agents on each node.

Self-Optimizing

The performance of a system or an application
depends on its goal and current configuration. When the
configuration changes or a new application is
introduced, a system often requires fine-tuning in order
to get the best performance. This is another task system
administrators are faced with when change is introduced
to a networked environment such as a cluster.

An autonomic system is self-optimizing and once
again frees the system administrator from this burden.
In the context of clusters, the key optimization issue is
load balancing. Load balancing is deciding where to
assign new processes so that the resources in the cluster
are efficiently used to provide the best performance.

Through the use of autonomic properties, the
ACMS is able to accomplish optimization in an
environment where changes are frequent. The task of
self-optimization is performed by the Optimization
Agent. This agent uses the information gathered by the
Configuration Agent to determine load statistics for each
node. The ACMS gathers information used for load
balancing before a new process is scheduled; it does not
move processes once they have begun. Each process is
assigned to a machine based on a predetermined
availability threshold generated through a performance
evaluation function. By making informed decisions
based on knowledge of the system’s current state, the
Optimization Agent is able to efficiently distribute user
processes as soon as they are scheduled, so there is no
need to use preemptive scheduling techniques.

The ACMS also performs load balancing on the two
Configuration Agents and the Optimization Agent.
ACMS is a mobile agent system and has the power to
relocate any agent from one node to another. The
system favors placing the Configuration Agents and the
Optimization Agent on nodes with a low load.

In addition, ACMS will attempt to distribute the
three agents among separate nodes to provide better fault
tolerance and recovery of key components.

Self-Protecting

An autonomic system must provide security in order
to prevent attacks and protect private information.

The system must take a proactive approach and be
self-protecting. It can recognize intrusion attempts and
prevent them by itself. This avoids the unnecessary t
the loss of time inherent in current systems, where an
intrusion attempt must first be found and then patched.

 If the system alone can handle the encounter, the
intrusion can be stopped immediately and the damage
contained. In this way, the ACMS offers greater
security and confidence than traditional approaches.

Redundancy and encryption are used to realize self-
protection. Redundancy is used to protect the system
from failure so that it can use its properties of self-
healing to recover. System redundancy includes
redundant agents as well as extra copies of the database
detailing the topology of the cluster.

The ACMS uses 2048-bit RSA encryption to prevent
rogue agents from joining, or communicating with, the
system. Except for broadcast messages, all
communication is conducted over Secure Sockets Layer
(SSL). Any program that attempts to instruct an agent
to take an action or attempt to join the system will have
to communicate with the Configuration Agent over SSL

with the correct certificate. Without the required
certificates and keys the (rogue) agent will be refused
admittance and be unable to decrypt communication
across the cluster.

Another benefit of encrypted communication is the
ability to build a cluster as part of an existing network;
the ACMS will remain secure and function while
running alongside nodes that are not part of the ACMS
topology.

4. Agent Design

4.1 Configuration Agent

The purpose of the Configuration Agent is to provide
the ability to self-configure within the system.

The functionality of the Configuration Agent
consists of maintaining a current list of all the agents in
the system and making this information available to
other agents upon request.

When an agent first comes on-line it broadcasts to
the Configuration Agent's multicast address stating that
it has joined the system. When this message is
received, the Configuration Agent examines the table to
ensure that the new agent is needed. For example, if
there are already two Configuration Agents in the
system and a third comes on-line, the new agent is not
needed. If the new agent does not belong in the system,
a termination message is sent back to the agent.

In addition, the Configuration Agent cycles through
the database of agents asking each if it is still
functioning properly. If the Configuration Agent is
incapable of establishing a connection with an agent, it
can be assumed that the agent is no longer functioning
correctly and will therefore be restarted. Otherwise, the
agent responds with a list of information such as the
address and port number of the agent’s location, the
agent type, and its system statistics (processor speed,
number of processors, total memory, free memory, etc.).
This list of information can be easily expanded to
include requests for other information, if necessary in
the future. When the Configuration Agent receives this
information it updates the database.

The system contains both a primary and a secondary
Configuration Agent to support redundancy and the self-
healing autonomic property. Ideally, the two
Configuration Agents would be on different nodes in the
system so that if one node stops responding there would
be at least one Configuration Agent in the system.

The reason for redundancy is that the database of
agents is stored locally by the agent in memory.
Therefore, if the agent stopped functioning for any
reason all the information would be lost. The secondary
configuration agent synchronizes with the primary
configuration agent and maintains a copy of the
database. Only the primary configuration agent performs
the system configuration tasks. However, if the primary

agent were to stop functioning, the secondary agent
would be able to continue in the role of the primary
agent.

In this case the Optimization Agent would detect that
there were only one Configuration Agent functioning
and recreate a second Configuration Agent.

4.2 Optimization Agent

The purpose of the Optimization Agent is to make the
system self-optimizing.

The role of the Optimization Agent within the
system is first to contact the Configuration Agent for a
current copy of the database. Once received, the
Optimization Agent begins analysis of the database to
ensure that there are the correct number and types of
agents in the system.

If it finds the configuration to be incorrect, it sends
commands to create or kill one or more agents,
stabilizing the system. After performing a brief analysis
of the system, it then begins observing the loads and
statistics of each node, noting the lightly and heavily
loaded nodes.

When an application needs to start a new process, the
Optimization Agent searches for the first node that is
not heavily loaded. It contacts a General Agent on that
node and commands it to start the requested process.
The Optimization Agent has the capability to move
agents and processes from one node to another; allowing
for load balancing of processes.

No redundancy is built in to the Optimization Agent
because it does not store any important information in
memory. If the agent were to stop responding, the
Configuration Agent could easily recreate it. Once
recreated, it would continue functioning properly with
no loss of critical data. The only loss that occurs is any
analysis of the table that the previous Optimization
Agent had completed.

4.3 General Agent

The main function of each General Agent is to
execute the commands sent to it by the other agents.

These commands are either to start or stop processes
running on its node, to spawn a new agent, or to
terminate itself. Termination gives the configuration
and optimization agents the ability to start any type of
agent on any node in the system. Redundancy, as with
the Configuration Agents, is built into the General
Agents.

 The reason for redundancy in this case is not to
preserve data, but to ensure that a node will remain part
of the system. If there were only one General Agent on
a node, and that agent stopped responding, the entire
node would be disconnected from the system. However,

if there are two General Agents per node and one fails,
the remaining agent can recreate the failed General
Agent. Once again this behavior satisfies the self-
healing autonomic property, reducing the need for
human maintenance and intervention.

5. System Topology

Our prototype system utilizes a hybrid centralized and
decentralized design, as shown in Figure 2.

Figure 2. System Topology

The system acts in a centralized manner, with all
information being contained in the Primary
Configuration Agent.

The database which is maintained contains
information regarding all living agents within the
system. Since all information is held in one location
the system becomes easily maintainable and coherent.

However, fault tolerance is handled in a decentralized
manner. Data is redundant with both a primary and
secondary configuration agent. Also, there is replication
of agents if any fail or are shutdown.

Decentralized systems can be insecure because nodes
can join at any point and start sending data that may be
incorrect. However, all message transfer in our
prototype is encrypted. Therefore, any node that joins
the system would not be able to communicate with
other agents unless the correct certificates were used.

Although the system’s decentralized topology creates
some security challenges, this type of topology
facilitates scalability. Any new nodes with the correct
certificates can join the system and immediately begin
communicating with other agents.

5.1 Network Communication

The communications system is important in any
distributed or clustered system, but its role in an
autonomic system is of even greater significance.

In addition to providing a mechanism for transferring
data across a network, our prototype also has to satisfy
the self-protecting autonomic property.

We originally chose to implement this property by
encrypting all system communication, to reduce the
possibility of an attacker gaining unauthorized access to
system commands by monitoring unencrypted network
traffic.

However, in addition to the peer-to-peer
communication between nodes, we realized that in
certain cases we would need to broadcast a message to a
group of agents. We later discovered that there is
currently no way of encrypting broadcast messages,
because broadcasts use the User Datagram Protocol
(UDP) instead of the connection-oriented Transmission
Control Protocol (TCP) used by secure protocols.

We decided that the messages that needed to be
broadcast to the entire system would not contain any
sensitive information, so they could be transmitted
unencrypted.

Java has built-in support for SSL, a popular and
trusted method for transferring encrypted data across
networks. We decided that SSL was sufficient to meet
the needs for our secure peer-to-peer communication
because it is capable of using strong 2048-bit
encryption. Implementing it would not be much more
difficult than using standard network communications
because of the excellent SSL support in Java. We chose
to use 2048-bit RSA encryption, and generated the
keystore and truststore files. The keystore holds our
private key, and the truststore tells the system to trust
this key. These two files must be present on all nodes
of the system for SSL communication to function.

Although we needed a method for sending a message
to multiple agents simultaneously, broadcasting seemed
inefficient. It was not necessary for all agents on every
node to receive a broadcast. Each message that is sent is
only destined for a certain group of agents, and a
broadcast message will never need to be sent to all
agents in the system. Since broadcasting to the entire
system is not necessary, we decided instead to use
multicasting. With the use of multicasting, we wanted
to be able to send a message to all agents of the same
type by assigning each type of agent a different
multicast address and port.

6. Evaluation of the Prototype

The ACMS prototype was evaluated using two types of
test.

The first type of test was designed to verify the
operational capabilities of the ACMS. For this
operational test we developed seventeen operational

scenarios that the ACMS might encounter. For each
scenario, we specified an initial system state, an event
that occurs, and the expected result.

The following are two examples chosen from the
seventeen scenarios:

Scenario 4:
Unexpected Termination of a General Agent
Initial state: The ACMS is active.
Event: A general agent on one of the nodes is
terminated.
Expected result: A new general agent is created on the
same node (self-healing).

Scenario 10:
Introduction of a Third Configuration Agent
Initial state: The ACMS is active and contains two
configuration agents.
Event: A third configuration agent attempts to join the
system.
Expected result: The ACMS terminates the third
configuration agent, rather than allowing it to join the
system (self-protecting).

Through careful evaluation of these operational
scenarios we were able to validate our implementation of
the autonomic properties, verify that the ACMS
functioned as we expected, and ensure that the ACMS
was able to handle unexpected events.

The second type of test was designed to measure the
performance and overhead of the ACMS. We created a
simple distributed application that we executed in
different configurations on a small cluster managed by
the ACMS. This distributed application calculates all
the prime numbers between one and one million.
Although the application is simple, its operation is
characteristic of many distributed applications in the
scientific and academic communities.

Most of these applications are very compute-
intensive, and the time required to transfer the data set is
small in comparison to the time required to analyze the
data. Our distributed application used a client-server
model. The server partitioned the one million numbers
into discrete data sets of ten thousand numbers each.
The clients connected to the server, received a data set,
searched the set for prime numbers, and reported their
results back to the server. We executed our distributed
application in four configurations:

(1) 1 node without the ACMS

(2) 1 node with the ACMS
(3) 5 nodes without the ACMS
(4) 5 nodes with the ACMS

In each configuration we measured the total amount
of time required to check the entire range of one million
numbers. We executed the application three times per
configuration and averaged the run times.

Comparing the execution time of scenarios (1) and
(3) allowed us to measure the approximate performance
gain that could be achieved by harnessing the parallel
processing power of a cluster over that of a single
computer.

Comparisons of scenarios (1) and (2), and
additionally scenarios (3) and (4), allowed us to measure
the approximate overhead of the ACMS and how that
overhead changed as the size of the cluster increased.

 Finally, comparing scenarios (2) and (4) showed
how well the ACMS scaled as the cluster size increased
from one to five nodes.

The average times for each test are given in Table 1.
These results, although they should not be overstated as
they are applied to a very limited sample, nevertheless
clearly demonstrate the power of distributed computing.

Increasing the size of the cluster from one to five
nodes resulted in a performance increase of
approximately 451% without the ACMS and 458% with
the ACMS.

 Since the maximum theoretical performance gain
would have been 500%, we were very pleased that our
results came so close to the ideal gain. It is important
to note that when measuring the performance gain it is
only reasonable to compare Test (1) with Test (3) and
Test (2) with Test (4), which is the reason that the other
comparisons are not shown in the table.

Comparing the results from Test (1) and Test (2)
gives an approximate value for the overhead associated
with running the ACMS on one node. It is important
to note that this approximate measure of overhead, about
5%, is the worst-case value for the overhead. This value
is the highest possible overhead because all five agents,
in addition to the user applications, were running on the
same node.

The ACMS guarantees that in any configuration with
more than one node there will be no more than four
agents on any single node, and most nodes will only
have two agents. Therefore, as the number of nodes in
the system increased, we expected the overhead caused

Table 1: System Evaluation – Result Averages

Average Run Time % of Test 1 Time % Gain % of Test 2 Time % Gain
Test 1 0:49:51 100.00% 0.00% 95.53% -
Test 2 0:52:11 104.68% - 100.00% 0.00%
Test 3 0:11:02 22.13% 451% 21.14% -
Test 4 0:11:24 22.87% - 21.85% 458%

by the ACMS to decrease. This prediction was
confirmed when we performed the last two tests.

In comparing the results of Test (3) and Test (4) it is
clear that the overhead due to the ACMS was
significantly reduced. As the number of nodes increased
from one to five the overhead decreased from almost 5%
to less than 0.75%. This result is significant because
increasing the cluster size by a factor of five actually
decreased the overhead by a factor greater than six. We
were encouraged by this result because, although we
were not able to test the ACMS on a large cluster, the
data imply that the system scales efficiently.

7. Conclusions

We have described an experimental project to develop a
prototype Autonomic Cluster Management System,
suitable for use in cluster-based high-performance
computing.

The general purpose of the project was to gain some
insight into what the four key autonomic properties
would involve in the implementation of such a
management system. We have successfully
implemented these.

The prototype has been evaluated and demonstrated
to be scaleable. While the sample space for our
experimentation was small, we are encouraged by seeing
a decrease in overhead for the ACMS as the cluster size
grows, with a simultaneous (almost 100%) expansion in
processing power.

Future extensions of this work will include adding
“learning”, and examining its effect on autonomicity.

Acknowledgement

We wish to acknowledge the constructive criticism
given an earlier version of this paper by Patricia Rago
and her colleagues at IBM.

References

[1] J. Garms and D. Soerfield, Professional Java Security,
APress, Berkeley, CA., 2003.

[2] IBM Corp., “About IBM Autonomic Computing”, IBM
Autonomic Computing; 4 January 2005, http://www-
03.ibm.com/autonomic/about.shtml.

[3] IBM Research Communications, “Glossary”,
http://www.research.ibm.com/autonomic/glossary.htm
l, 23 February 2001

